
Mouset E.1,*, Pechaud Y.,1, Oturan N.1 And Oturan M.A.1
1 Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée Cedex 2, France
2 Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville BP 20451, 54001 Nancy cedex, France
*corresponding author:
e-mail: emmanuel.mouset@univ-lorraine.fr

Abstract For the first time, performing a combined anodic oxidation (AO) and an electro-Fenton (EF) process has shown that the initial organic pollutant load variation had an impact on either the heterogeneous 'OH production at anode surface by AO (‘OH$_{hetero}$) or the homogeneous 'OH generation by EF in bulk solution (‘OH$_{homo}$). Lower initial COD concentration (COD = 12.1 g-O$_2$ L$^{-1}$) lead to an equivalent influence (50%) of both ‘OH$_{hetero}$ and ‘OH$_{homo}$ on its degradation efficiency while an increase of contaminant amount (from COD = 12.1 g-O$_2$ L$^{-1}$ to 23.3 g-O$_2$ L$^{-1}$) conducted ‘OH$_{hetero}$ having better degradation rates (70-80%) as compared to ‘OH$_{homo}$ (20-30%). These trends are related to the competition between charge transfer and mass transport controls that has been confirmed by a mathematical model fitting the experimental data. These results emphasized the need to adapt the reactor design to favor either AO and/or EF according to the load of treated wastewater (micropollutants or heavy industrial effluents).

Keywords: AOPs, anodic oxidation, charge transfer, electro-Fenton, mass transport.

1. Introduction

Numerous hazardous contaminants, namely persistant organic pollutants (POPs), remained in the environment, especially in water bodies. Most of these contaminants are biorecalcitrants and cannot be therefore completly removed in conventional wastewater treatment plants.

Advanced physico-chemical treatments such as advanced oxidation processes (AOPs) have been therefore developed to face this issue (Oturan and Aaron, 2014). They all rely on the production of hydroxyl radical (‘OH) that has a very high oxidation power (E° (‘OH/H$_2$O) = 2.8 V/SHE) (Brillas et al., 2009). This oxidant reacts especially quickly with aromatics compounds and C=C double bonds (107-1010 M$^{-1}$ s$^{-1}$) (Mouset et al., 2016a), major chemical structures present in organonanobiotech molecules. In particular, emerging electrochemical AOPs (EAOPs) offer the advantages of producing continuously and in situ the ‘OH radicals (Sirés et al., 2014). Two main ways have been considered until now to produce these ‘OH, (i) either by homogeneous catalysis through Fenton reaction (Eq. 1) using a carbonaceous cathode generating H$_2$O$_2$ (Eq. 2) (Mouset et al., 2016c; Zhou et al., 2014) combined with the addition of a catalytic amount of Fe$^{2+}$ (< 0.2 mM) – unless initially present in solution (Mouset et al., 2016b), namely electro-Fenton (EF), and/or (ii) by heterogeneous catalysis through anodic oxidation (AO) in the presence of a high O$_2$ evolution overvoltage anode such as boron-doped diamond (BDD) (Eqs. 3a-3b) (Martinez-Huiet et al., 2015; Panizza and Cerisola, 2009; Rodrigo et al., 2014).

Fe$^{2+}$ + H$_2$O$_2$ \rightarrow Fe$^{3+}$ + HO$^-$ + ‘OH (1)
O$_2$ + 2H$^+$ + 2e$^-$ \rightarrow H$_2$O$_2$ (2)
BDD + H$_2$O \rightarrow BDD(‘OH) + H$^+$ + e$^-$ (3a)
BDD(‘OH) + POPs \rightarrow BDD + oxidation prod. (3b)

Thus, by combining EF and AO mechanisms this paired electrocatalysis process allows generating homogeneous ‘OH (‘OH$_{homo}$) in the bulk solution and heterogeneous ‘OH (‘OH$_{hetero}$) at the anode surface. Thanks to the existence of two sites of radical production, the degradation and mineralization efficiencies of the EF process are very high (Mouset et al., 2014a, 2014b, Trellu et al., 2016a, 2016b), even with the most recalcitrant organic pollutants (> 95%) (Oturan et al., 2012). Still, the contribution of ‘OH$_{homo}$ and ‘OH$_{hetero}$ in the degradation and mineralization efficiency has not been carried out and never been quantified. A better understanding of this contribution will help in the selection on the kind of reactor design by improving either the contact of pollutant with ‘OH$_{homo}$ in the bulk or by favoring the contact of contaminants with ‘OH$_{hetero}$ at the anode surface. Moreover, the initial organic load is another important parameter that need to be taken into account as it may influence the rate-determining step, i.e. either mass transport or charge transfer, and therefore the reactor design to be applied. For instance, micropollutant effluents (low organic load) or heavy industrial effluents (high organic load) may lead to different design applications.

In this context, this study proposes for the first time, to evaluate in an EF/AO process the contribution of ‘OH$_{homo}$
Table 1. Kinetic rate constants values at different initial COD concentrations and for AO-BDD and EF-BDD electrolysis

<table>
<thead>
<tr>
<th>COD (g-O₂ L⁻¹)</th>
<th>1.61</th>
<th>12.1</th>
<th>23.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero-order constants (k⁺₀) (at t < tᵣ) (mmol L⁻¹ h⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁺₀(AO-BDD)</td>
<td>-7.92</td>
<td>-19.52</td>
<td>-21.6</td>
</tr>
<tr>
<td>(R² = 0.974)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁺₀(EF-BDD)</td>
<td>-14.99</td>
<td>-27.59</td>
<td>-29.69</td>
</tr>
<tr>
<td>(R² = 0.994)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁺₀(AO-BDD)/</td>
<td>53</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>k⁺₀(EF-BDD) (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-order constants (k⁻¹) (at t > tᵣ) (h⁻¹)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁻¹(AO-BDD)</td>
<td>0.2251</td>
<td>0.0762</td>
<td>0.0473</td>
</tr>
<tr>
<td>(R² = 0.984)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁻¹(EF-BDD)</td>
<td>0.5316</td>
<td>0.2150</td>
<td>0.1210</td>
</tr>
<tr>
<td>(R² = 0.946)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k⁻¹(AO-BDD)/</td>
<td>42</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td>k⁻¹(EF-BDD) (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

and ·OH hetero in the degradation and mineralization efficiency of synthetic solution at different initial organic load. A kinetics model is suggested to support the given experimental data.

2. Materials and Methods

2.1. Chemicals

All the following products were used at analytical grade without any further purification: methanol (HPLC grade), sodium sulphate and 2-(P-toluidino)naphthalene-6-sulfonic acid sodium (TNS) and Tween® 80 (C₈H₁₇O₂SO₄; 1310 g mol⁻¹) were purchased from Aldrich. Heptahydrated ferrous sulfate (FeSO₄•7H₂O), sulfuric acid and potassium dihydrogen phosphate (KH₂PO₄) were supplied by Acros. Potassium hydrogen phthalate (C₇H₆O₄K) from Nicolai Tesque was employed. Ultrapure water (UPW) from a Millipore Simplicity 185 (resistivity > 18 MΩ cm) system was used in all experiments.

2.2. Electrolysis experiments

EF experiments (EF-BDD) were performed in a 0.40 L undivided, open and cylindrical glass electrochemical reactor at current controlled conditions. The electrochemical cell was monitored by a power supply HAMEG 7042-5. The cathode was a 150 cm² carbon-felt piece (Carbone-Lorraine). The anode studied was a BDD plate (5 × 4 cm) and was centred in the cell and surrounded by cathode which covered the inner wall of the cell. Sodium sulphate (0.150 M) was added as electrolyte in the medium. FeSO₄•7H₂O was also added at 0.2 mM as source of Fe²⁺ ion as catalyst. Prior to each experiment, the solutions were saturated in O₂ (8.53 mg O₂ L⁻¹ at 22 °C) by supplying compressed air bubbling through the solution 10 min before the beginning of the treatment. Solutions were stirred continuously by a magnetic stirrer. The pH of initial solutions was set to the optimal value of 3.0 (± 0.1) by the addition of H₂SO₄ (1 M) solution. The pH changes were negligible during the electrolysis at pH 3.0; it decreased only to 2.8 (± 0.1) at the end of experiments. Different Tween® 80 concentrations were monitored: 0.8, 6.0 and 12.0 g L⁻¹, corresponding to the following initial measured COD concentrations (C₀): 1.61, 12.1 and 23.3 g·O₂ L⁻¹.

AO experiments (AO-BDD) were performed in the same electrochemical cell and conditions than EF without adding FeSO₄•7H₂O. The same Tween® 80 concentrations were carried out (0.8, 6 and 12 g L⁻¹).

2.3. COD analysis

Chemical oxygen demand (COD) analyses were accomplished by a photometric method using a Spectroquant® NOVA 60 (Merck) equipment. The samples were diluted and prepared by adding 2 mL of each one in COD Cell test (15-300 mg O₂ L⁻¹ range) (Merck) and by heating at 148°C during two hours with a Spectroquant® TR 420 (Merck). The tubes were let cool to room temperature before analysis.

2.4. Modelling software

A mathematical model has been developed in order to carry out the competitive mechanisms, i.e. charge transfer vs mass transport controls (as developed in section 3.2). The Aquasim® software was used to accomplish this model (Reichert, 1998).

3. Results and discussions
3.1. Experimental results

The COD decay has been monitored at three different initial COD concentrations (1.61, 12.1 and 23.3 g·O₂·L⁻¹) considering two kinds of electrochemical treatments (AO-BDD and EF-BDD) and the experimental results are displayed in Figure 1. First, it can be observed that EF-BDD experiments depicts quicker kinetics than AO-BDD whatever the initial COD concentration. This is attributed to the two sources of OH formation in EF-BDD (Eqs. 1, 3a-3b) as compared to one source in the case of AO-BDD (Eqs. 3a-3b). In addition, it was noticed that 75% of COD removal during EF-BDD treatment was reached after 3 h, 11 h and 18 h as the initial COD concentration increased. This feature highlights the initial concentration dependency of the kinetics. Interestingly, the curves seem having different trend according to the time of treatment and the initial COD concentrations. Previous authors have shown that in the presence of BDD anode, two successive regimes could be observed depending on the applied current density and initial concentration of pollutants. At the beginning of the treatment and at sufficiently high concentration of organic compounds, the mass transport is supposed to be faster than the charge transfer so that it is under current control, while as the concentration decreases, the anodic oxidation is considered a slower reaction so that it is under diffusion control.

The values of decay rate constants of zero-order (k₀app) have been determined from the slope of the concentration of COD (C) as function of treatment time below at the beginning of the treatment while first-order (k₁app) constants were calculated from the slope of the semi-logarithmic plot of ln(C/C₀) as a function of treatment time at the end of treatment. All these values are listed in Table 1 along with the correlation coefficients (R²). R² values are all higher than 0.94, indicating a quite good fitting, except one k₀app(EF-BDD) at the highest concentration that give a value around 0.76, because of the lack of experimental points at such long treatment time.

An interesting feature is given by the ratio of k₀app(AOBBDD)/k₀app(EF-BDD) in Table 1, that was higher at 12.1 g·O₂·L⁻¹ (80%) and 23.3 g·O₂·L⁻¹ (70%) initial COD concentration as compared to the lowest one (53%). It seems that at the beginning of the treatment ‘OH heterogeneous have higher contribution at higher initial organic load than ‘OH homo, as compared to lower concentration in which equivalent contribution of ‘OH could be observed. At the end of the treatment, the contribution is changing because mass transfer of organic compounds is the rate-limiting step, so they are more oxidized by ‘OH homo formed in the bulk. Still ‘OH hetero could participate in the oxidation processes from 39% to 52%.

In order to deeper figure out the involvement of these phenomenon in the present study, a mathematical model has been developed as discussed in section 3.2.

3.2. Mathematical modelling

The time at which the current density regime switch to the mass transfer control is called critical time (tₖ) and can be expressed as follow (Michaud and Comninellis, 2002):

$$t_{cr} = \frac{1 - \alpha}{\alpha} \frac{t_0}{\alpha}$$ (5)

with $$\alpha = \frac{j_{lim}}{j_{lim}^0} = 4F\kappa_OLC0^0$$ and $$t_0 = \frac{V}{K_A}$$

where j is the applied current density (A·m⁻²), and j_{lim}^0 is the limiting current density (A·m⁻²) at C₀ (mol·L⁻¹), F is the Faraday constant (96 485 C·mol⁻¹), t_0 is the characteristic time (s), V is the volume of the treated solution (m³), K_λ is the mass transfer coefficient (m·s⁻¹) and A is the surface area of the BDD anode (2 × 10⁻⁴ m²).

In AO-BDD experiments the reaction rate responsible for the degradation of compounds at the anode surface by AO (anodic oxidation) from water discharge (Eqs. 3a-3b) was adapted from the one given by previous authors (Michaud and Comninellis, 2002; Panizza et al., 2001; Sopaj et al., 2015) and was varying according to the t_{cr} value (Eqs. 5-6).

$$r_{anodic\ oxidation} = \frac{K}{K + C^0}$$ (5)

$$r_{anodic\ oxidation} = \frac{K_{LAC}C^0}{V}$$ (6)

where K is the constant taking into account the parallel reactions occurring at the surface of BDD.

It is important to note that the K constant was not considered in previous models that assume secondary reactions at the BDD surface were negligible (Michaud and Comninellis, 2002; Panizza et al., 2001; Sopaj et al., 2015). However, in the present study it seems that this assumption cannot be certified. This difference with literature could be attributed to the high applied current density (50 mA·cm⁻²) required to treat highly concentrated TWEEN 80 solutions, raising the rate of parallel reactions.

Another reaction rate taking into account the mediated oxidation (r_{mediated\ oxidation}) due to the formation of oxidants (Ox) at the vicinity of the BDD surface (Eq. 7) was considered in AO-BDD experiments. Though initially this kinetics equation is considered as second order, concentrations of oxidants ([Ox]) can be assumed to reach a pseudo-steady state value so that the final reaction order is one (Sopaj et al., 2015).

$$r_{mediated\ oxidation} = k_{ox}[Ox]C = k_{mediated}C$$ (7)

where k_{ox} is the decay rate constant of the studied compound due to mediated oxidation (L·mmol⁻¹·h⁻¹) and k_{mediated} is the apparent mediated decay rate constant (h⁻¹).

In EF-BDD process, a third reaction rate was taken into account for the Fenton reaction in bulk solution (r_{Fenton\ oxidation}) (Eq. 8), considering the quasi-steady state approximation for OH concentration ([‘OH]) evolution (Brillas et al., 2009).

$$r_{Fenton\ oxidation} = k_{Fenton}[‘OH]C = k_{obs}C$$ (8)

where k_{Fenton} is the decay rate constant of the studied compound due to Fenton reaction (L·mmol⁻¹·h⁻¹) and k_{obs} is the observed decay rate constant (h⁻¹).
Thus, in the batch reactor the mass balance led to the following global reaction (Eq. 9):

\[\frac{dC}{dt} = V \sum_i r_i \]

(9)

where \(r_i \) is the kinetic rate of oxidation process \(i \); \(i \) represents the AO and mediated oxidation in the case of AO-BDD experiments while \(i \) consists of the AO, mediated oxidation and the Fenton oxidation in the case of EF-BDD experiments.

The \(t_{cr} \) values calculated according to Eq. 5 were as follows: negative value for 1.61 g-O\(_2\) L\(^{-1}\), 8.3 h for 12.1 g-O\(_2\) L\(^{-1}\) and 23.3 h for 23.3 g-O\(_2\) L\(^{-1}\). The negative value meant that the regime was only under mass transfer control, i.e. exponential decrease all along the treatment.

These decay rate constants were used in the suggested model and the results are plotted in Figure 1 to be able to compare the fitting with the experimental data. It can be seen that the model could fit quite well the experimental data, with only first-order kinetics at low concentration (1.61 g-O\(_2\) L\(^{-1}\)) as suggested by the negative \(t_{cr} \) value. The proposed model will be further improved in order to be closer to the real physico-chemical mechanisms occurring in such oxidation processes.

4. Conclusions

This work presented the influence of the initial COD concentration on the mass transport vs charge transfer during AO and EF treatments with BDD anode. A mathematical model considering three kinetics reaction occurring (i) at the anode surface by AO, (ii) at the vicinity of the anode through mediated oxidation and (iii) in bulk solution with Fenton oxidation has been proposed. This model could fit the experimental data only if the parallel reactions involved at the anode were also taken into account. A further interesting outcome is the heterogeneous catalysis (e.g. AO process) that is primordial at higher initial organic load while homogeneous catalysis (e.g. EF process) slightly dominates at low initial organic concentration. These results give promising perspectives in the reactor design optimization, a necessary step for the upscaling stage.

References

Szymczyk K., Taraba A. (2016), Aggregation behavior of Triton X-114 and Tween 80 at various temperatures and concentrations studied by density and viscosity measurements, Journal of Thermal Analysis and Calorimetry, 126, 315–326.

